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Abstract

The asymptotic stress and deformation fields of a crack propagating steadily and

quasi-statically into an elastic-plastic material, characterised by Jo- flow theory with linear

strain-hardening, were first determined by Amazigo and Hutchinson (1977) for the cases of

mode I and mode I (plane strain and plane stress). Their solutions were approximate in

that they neglected the possibility of plastic reloading on the crack faces. This effect was

taken into account by Pon. ,Gtafieda{198. who formulated the (eigenvalue) problem

in terms of a system of first order O.D.E.'s in the angular variations of the stress and

velocity components. The strength of the singularity, serving as the eigenvalue, and the

angular variations of the fields were determined as functions of the hardening parameter.

The above analysis does not determine the amplitude factor of the near-tip

asymptotic fields, or plastic stress intensity factor. In this work, a simple, approximate

technique based on a variational statement of compatibility is developed under the

assumption of small-scale yielding. A trial function for the stress function of the problem,

that makes use of the asymptotic information in the near-tip and far-field limits, is

postulated. Such a trial function depends on arbitrary parameters that measure the intensity

of the near-tip fields and other global properties of the solution. Application of the

variational statement then yields optimal values for these parameters, and in particular

determines the plastic stress intensity factor, thus completing the knowledge of the near-tip

asymptotic fields. The results obtained by this novel method are compared to available

finite element results.
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1. Introduction

In the propagation of cracks in ductile materials, a stage of stable crack growth,

where the efects of inertia are unimportant, is often observed under continuously increasing

external load, and immedniately following the onset of crack growth. This phenomenon is

intrinsic to the plastic deformation at the tip of a moving crack: as the crack propagates in

an elastic-plastic material, it leaves behind a wake of residual plastic deformation, which

typically accounts for all of the energy available from the external source, and thus reduces

the tendency of the crack to grow.

Under small-scale yielding, which assumes that the size of the active plastic zone

surrounding the crack tip is small compared to the crack size and the overall dimensions of

the specimen in consideration, an appropriate measure of the external loading is the stress

intensity factor of the enclosing elastic singularity fields. In accord with the discussion in

the previous parragraph, it has been postulated that the graph of such elastic stress intensity

factor versus the amount of crack growth, called the resistance curve, is a material property

for small-scale yielding.

Central to these notions, and to the continued development of fracture mechanics in

general, is the knowledge of the stress and deformation fields near the tip of the advancing

crack, and important advances have been made in recent years.

Most of the work, however, has been in the context of the ideal elastic-plastic solid.

McClintock (1958) and McClintock and Irwin (1965) were the first to demonstrate that the

key to stable crack growth lies in the nature of the plastic deformation, and found that the

strains in the active plastic zone newar the tip of the crack depend logarithmically on the radial

distance from the crack tip, r. Later, Chitaley and McClintock (1971) gave the correct

asymptotic solution to the problem of a steadily and quasi-statically growing crack in an

ideal elastic-plastic material with Mises yield criterion. Rice (1974) demonstrated that the

same logarithmic dependence of the strains on r would be expected for the cases of plane
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stress and plane sain. Slepyan (1974) obtained the first comt asymptotic solution of the

plane strain problem in modes I azW 1 using a Tresca yield criterion. Rice et at. (1980),

following Rice and Sorensen (1978), and Gao and Hwang (1980), independently, solved

the plane strain problem in mode I using a Mises yield criterion, but the validity of their

solution was restricted to the case of v = 1/2. Somewhat later, Drugan et al. (1982)

gencralised the results to the case of v # 1/2. The plane-stress mode I problem has

remained most elusive, but recently, Ponte Castafleda (1985a) produced a solution to the

coresponding mode I problem. In addition, a general discussion of the subject can be

found in Rice (1982).

The corresponding work for the hardening elastic-plastic solid is at a less developed

stage, and most of this work relates to the linear-hardening case. Slepyan (1973), using a

modified J2-deformation theory, produced the first asymptotic solution to the problem of a

mode Ml crack propagating steadily in a linear-hardening material. Much later, Ponte

Castafieda (1985b) extended Slepyan's work to the mode I case. Amazigo and Hutchinson

(1977), using J2-flow theory, produced steady-state asymptotic solutions for the moving

crack in anti-plane strain, as well as in plane strain and plane stress mode L For a linear-

hardening material, with Young's modulus, E, and tangent modulus, E, they found a

variable-separable solution with stress and strain fields having a power singularity of

strength, a, which is a function of the hardening ratio ot = E/E, and vanishes in the

perfectly-plastic limit. These solutions, however, neglected the possibility of plastic

reloading on the crack flanks which is known to occur in the elastic-perfectly plastic

solutions mentioned above. In a recent publication, Zhang et al. (1983) included reloading

(as well as a Bauschinger effect) in their solution of the plane-strain mode I problem. More

recently, but independently, Ponte Castafieda (1985c) formulated the problem efficiently in

terms of a system of first order OD.E.'s in the angular variations of the components of the

stress and velocity fields, and included as well the effect of reloading in the solution of the

and-plane strain, plane strain and plane stress (modes I and 1) problems.
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These asymptotic solutions leave undetermined certain parameters in the

expressions for the stmu and deformation fields near the tip of the moving crack. In the

perfectly-plastic case, the parameter in question is the size of the plastic zone ahead of the

crack, but this parameter does not appear in the lowest order term of the asymptotic

expansion of the fields as r -+ 0, and its determination is not critical. On the other hand, in

the linear-hardening case, by analogy with the elastic problem, the amplitude of the lowest

order term of the asymptotic expansion of the stress and deformation fields, as measured

by the plsic stress intensity factor, is undetermined from the asymptotic analysis, and its

determination introduces an important problem.

In this paper we use the near-tip information known from the work of Ponte

Castafieda (1985c) to complete the knowledge of the asymptotic fields of a steadily

propagating crack in a linear-hardening material under small-scale yielding conditions by

determining the plastic stress intensity factor of these near-tip fields as a function of the

hardening parameter. Other relevant information, such as the size and shape of the active

plastic zones, will result as by-products of our calculations.

We develop a simple, approximate technique based on a direct use of a variational

statement of compatibility. Thus we propose a trial function for the stress function of the

problem, that makes use of the known asymptotic information in the near-tip and far-field

limits, and depends on arbitrar parameters that measure the intensity of the near-tip fields

and other global properties of the solution. Application of the variational statement then

yields optimal values for these parameters, and hence determines the plastic stress intensity

factor of the near-tip fields. The results obtained by this novel method will be compared to

the finite element method results of Dean and Hutchinson (1980), Dean (1983) and Mataga

(1986) for the linear-hardening material.
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2. Anti-plane strain (mode III)

2.1 The plastic strs intensity factor in small-scale yielding

Figure I-Steadily-propsgating crack in small-scale yielding.

Consider the steadily propagating semi-infinite crack depicted in Figure 1. Under

the small-scale yielding assumption, the elastic singularity field is imposed in the remote

limit sothiat

,9 (r.e) - Ke" iv(O) (2gr)- 1 2 .a I

as r -+oo,101c< (2.1)

v (rO) - -2 (V I 0) Ke1 ;in(O) (2,xr)12a V-

where V, v- refer to the well-known elastic singularity solution, Ke1 is the elastic stress

intensity factor, G is the modulus of elasticity in shear, V is the propagating speed of the

crack, and 7i-, (19) w'e the angular variations of the elastic fields in mode MI,

womalized such ;;a7(0) 1l for consistency with the definition of K'1.
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On the other hand, we require that in the near-tip limit

,9 (rO) - KPI ;(P(O) (2,tr)' a TO
as r 0 (2.2)

v (re) - V (V/0) vo(0) (2xr)s / s a vo

where go, v*refer to the near-tip solutions of Ponte Castafieda (1985c), KP1 is defined to

be the plasuc stress intensity factor in small-scale yielding, s - s(a) is the strength of the

plastic singularity, and we have normalized the angular variations of these near-tip fields,

which are also functions of a, such that °(O) = 1.

It is convenient to work with dimensionless variables, and in anti-plane strain we

select the following:

r = (ro/Kel) 2 r

a=1/% (2.3)

1 (G/%)(v/V)

where m, is the yield stress in shear.

In terms of these new variables the remote fields can be rewritten as

0(r,) = 'r(O) (2ZW-1W
(2.4)

r"(re) = -2 v-(e) (2W -r 112

and the near-tip fields as

sV(r,O) = K i6(0) (2nT)s

(2.5)
2 0(r,O) = ;o(0) (2i.js / s

where ic is the nondimensional plastic stress intensity factor, and is a function of c only.

It follows from this nondimensionalization that the plastic stress intensity factor

may be expressed as

K I =lim (2x"rY 2(rO) -Ic(c) (co)1+2s (Kel)-25 (2.6)
r-4O

and it now remains to determine the functional dependence of Kc on cL

%', iP-. ' ' ., -,*% ,''"- " ':, + , " ,':"'''+ "' ; ' + ; . ? ' : ' : '.. + ; + ' *:""'":";:'' .
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Note however that in the elastic limit we must have KPI = Kel, which necessarily

implies that
z ic() = 1

Alternatively, in the perfectly-plastic limit we expect KI= , and therefore that

1(0) - 1

2.2 The variaional statement of the problem

C.

v. CT

A

Figure 2-Domain for te general bounday value problem.

We wish to develop a simple, approximate technique to determine the functional

dependence of K on a. In this connection we propose to make use of the following

variational statement of compatibility:

Let A be the domain of the boundary value problem, with

boundaries CT and Cv, shown in Figure 2.

If the stress field i satisfies equilibrium

V-O - 0 in A (2.7a)

and the boundary condition

= %.n on CT (2.7b)

and if the functional relation

JAG &UA . ,,v,ds (2.7c)

+'i *
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between the engineering strain-rate G, and the velocity field, prescribed on

the boundary C,, v*. holds for arbitrary variations of the stress field ft,

that satisfy conditions (2.7a) and (2.7b).

Then the strain-rate field G is compatible

G - Vv (2.7d)

and the associated velocity field v meets the boundary condition

v = v* on C, (2.7e)

The constitutive relation to be used in conjunction with this statement is

a=i +GPI (2.8)

where Q. is the dimensionless engineering strain-rate vector, I is the dimensionless

stress-rate vector, and I inA.
UPl (2.9)

(oa-1) (167 ) z in AP

is the dimensionless plastic strain-rate vector, which depends on whether the material

particle is in an active plastic zone A., or in a zone of current e/astic behavior A.

The advantage of this particular choice for a variational statement (compatibility

over equilibrium) is that with this choice it is easier to compute all the quantities involved in

the variational statement In fact, with the introduction of a stress function f, that ensures

satisfaction of (2.7a) and (2.7b), we can easily compute all the quantities involved in the

variational statement via simple differentiation

= l.x (fe3)
(2.10)

Our approximate technique then consists in postulating the following trial function

forf

f(LG) = p(E) P,(LO) + qW f-(re) (2.11)
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where ,

fo(r.e) - x(a) go(e) z (27W$)', go(e) = - ¥eo(e) i (+s)

is the stress function associated with the near-tip fields,

f(0) = g-(O) r (27-ti "2, g-(e) = -2 cos (0/2)

is the stress function associated with the remote fields, and where p(r) and q(E) are

chosen so that the resulting stress and deformation fields conform with the given

asymptotic conditions, i.e. equations (2.1) and (2.2). Hence, we must require

p(O) = 1 p(oo) 0

q(O) = 0 q(oo) - 1

Also, since we must have that f = f0 =fP for cz = 1, we require that p(r) + q(r) = 1 for

= 1. For simplicity, we select our trial functions p(r) and q(r) such that p(r) + q(r) = 1

for all values of a. Thus, we take

p(r) -y2 / (y2 + r2) and q(t)= L2 1 (y2 +T2) (2.12)

where yis arbitrary.

Having specified f, we evaluate I and , by computing the appropriate derivatives

as indicated in (2.10)

1 1 f=sin f, + r cos Yfe

ffi-f -cOsO f + L - 1 sinO e9

1 =--fu l -(1/2) sin20 U., - r -1 fx -r- 2 fee)- cos20 (r-1 fle - r-2 fe)

12 = f. = cos2 0f, + sin2O (r-2 f,98 + x -1 f) sin20 ( r -1 fe - r -2 f,e)

Here the computation of the partial derivatives with respect to r is straightforward, but

yields lengthy expressions which we will not include here, and the computation of the

partials with respect to 0 involve the following derivatives of g°(O)

(go(e) = ;o(0) (go)"(e) - (¥)'(0)

which are expressed in terms of quantities readily available from the numerical integration

of system (2.5) in Ponte Castafieda (1985c).

...



We then evaluate the variation of I by assuming that ic and y are independent

parameters. We simply have that

=(0a1 laic) SIC + (as i'1) By

CT CR

Figures 3-oAi fom th uainlattnn ftestaiypoaain rc nS

Nextm weal four tvairiational statement o ane appropiat domacin A sshow i

Figure 3. A has been chosen for convenience to be a semi-circle of large radius R, and is

composed of two parts: the active plastic zones AP and the zone of current elastic behavior

A.. Note that on the crack face CT 0= as required by (2.7a), and that on the line ahead

of the crack C.

v*=O 0 Jc, V* Snds -o0
On the rest of the boundary CR, we assume that R is large enough that we can take

=* v-. Then

v* _O(r -W) and S% = ur *-) ~a -0

Thus the variational statement reduces to

JAI(tZai) dA + (Or-1)JfA(e'T) I -)s(ft/aK) dA = 0
(2.13) C

JAI3:(ft My) dA + (ol1 is(C* 0 01 d,)d

where A is now the upper-half plane X2 2! 0, and A. refers only to the active plastic zones.

Note, therefore, that the plastic wake does not enter directly in the calculation of ic(c), and
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also that no integrations are needed beyond the quadrature of the variational integrals. Note

further that although the fields (and in fact also some of the integrands in (2.13)) are

singular and the domain of integration is unbounded, the integrals themselves are bounded.

Equations (2.13) amount to a system of two algebraic equations in 1c and y to be

solved numerically using a secant method available as a package from LM.S.L. The area

integrals were evaluated as iterated integrals using successive Gaussian quadratures. The

difficulty in the known singularity in r as r - 0 was treated by subtracting the singularity

from the integrand and evaluating its contribution analytically. Alternatively, the difficulty

in the known singularity in 0 as 0 -i t, was treated by a stretching technique.

C, O

C2 e(r) R(O)

Figure 4-The laUtic-pl-utic boundaries for the steadily-propagating crack in SSY.

Finally, let us state for completeness the conditions that determine the elastic-plastic

boundaries shown in Figure 4. The plastic loading boundary Co is determined by

Q2 =.112 + 2=

which is interpreted as an algebraic equation for the radial coordinate of the boundary R as

a function of 0.

The elastic unloading boundary C1 is determined by

Iee 11 1 1 + 212O

which in turn is interpreted as an algebraic equation for the angular coordinate of the

boundary 0 as a function of 1.
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In anti-plane strain, we will not consider values of the hardening parameter for

which reloading takes place, and therefore we will not discuss reloading herm, but it is clear

that a similar treatment of the plastic reloading boundary C2 and the secondary elastic

unloading boundary C3 (if necessary) is appropriate.

2.3 Results

The results of the numerical calculations are given in Table 1, and are depicted in

Figures 5 and 6. It is seen that for mode HI, ca) remains roughly constant, and y varies

dramatically, especially near c - 1. As we have already remarked, ic(l) is expected to be

unity, but on the other hand, y(l) is undetermined by our choice of p(r) and q(r) (since

p + q = 1, independently of the value of y), and its steep behavior near a - I is not too

disturbing. In the limit of small c. the behavior of ic seems to be consistent with x -+ 1, as

expected, but our results are not conclusive since we do not trust our trial function for f for

very small c. This is due to the fact that the limit as c. -+ 0 of the near-tip fields is not

uniform, and the range of dominance of these fields vanishes in the limit as cz -+ 0 (see

Ponte Castafieda, 1985c).

The active plastic zones corresponding to several values of a are shown in Figure 7

using nondimensional coordinates in the axes. It is seen that the plastic zone gets shifted

forward as a decreases. Also remark that there is a sharp kink at the intersection of the

plastic loading and elastic unloading boundaries, and that the unloading boundary naturally

intersects the plastic loading boundary at the place where its slope vanishes.

Next we will compare our results to the finite element method results of Dean and

Hutchinson (1980) for linear-hardening in mode III, as improved by Mataga (1986).

Figures 8 are plots of the logarithm of 12 in the line ahead of the crack versus the logarithm

of r. Assuming that the power singularity solution holds close to the crack tip we have

12(r,0) = 1CL"

I illll Il[ i liiili o *',,. if. -,: : i ; ;. ,<< y ' "
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so that

In r2=- In K*+ s" In

We fit a straight line through those points in Figures 8 that are close to the tip (far from the

elastic-plastic boundaries which show as kinks in the graphs), and we compute the values

of s* and k*. Table 2 shows the results, and how they compare with our results for s and

ic. It is found that s* is not in very good quantitative agreement with the theoretically

correct s, particularly for the smaller values of oL Given this, we can only conclude that x*

is in adequate qualitative agreement with x

The active plastic zones corresponding to the finite element results (crosses) are

shown in Figures 9, together with our plastic zones (solid lines) for comparison. It is

found that our plastic zones have the same general shape as the finite element plastic zones.

However, it is not clear which plastic zones are more accurate. The finite element plastic

zones probably suffer from inaccuracy due to the relative coarseness of the grid,

particularly at the unloading boundary far away from the tip, where the results are very

sensitive due to the flat variation of . near unloading. Alternatively, our results are

probably not very good for the smaller values of oL due to the expected decrease in the

range of dominance of the near-tip fields.

3. Plane strain (mode I)

3.1 The plastic stress intensity factor in small-scale yie/ling

In plane strain the appropriate dimensionless variables are

I - (co / Kel )2 r

a= w Ca/Oo 233=033/Oo (3.1)

ya - (E / ao) (vaIV)

where a. is the yield stress in tension.

....... .......... ...... .............................. ... .l' ."k '" f, [,,:, ,, :.' - ,, " . , . - .. -,-,,, ,, .,. ,..'/-,-:-
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In small-scale yielding the remote fields are

C(r,G) = iin(6) (2xri- 1

lei< (3.2)
r(r0) = -2 , (G) (2crJ-11

where i-(0) and ,in(0) are well-known, and normalised such that ci () -1.

The new-tip fields are

UD(r,0) = IC a '(6) (2xV)
(3.3)

Y(r,e) = IC ;i)(0) (2nxJ5 / s
where s = s~xav), and the angular variations have been normalized such that ii~e(O)-L

It is then clear that for small-scale yielding

I= qC9cIv)

and the dimensional plastic stress intensity factor is given by

KPI = lirn (2xx)-s 02(rO) = 1c(Ucv) ((F )I 2S (Kel)-2 s (3.4)

Note that in the elastic limit we must have

IC(lv)= .1

and that due to the high level of triaxiality in the line ahead of the propagating crack in the

perfectly-plastic material (see Rice, 1980), we expect to have

(0,v) =- 3

depending on the exact value of v.

3.2 The variational statement of the problem

In plane strain the variational statement of compatibility is:

if

cpp.0in A (3.5a)

Ta -(yp npO on Or (3.5b)

and if

IA D.# 8adA f c, v.*8T. ds (3.5c)
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for arbitrary Map satisfying (3.5a) and (3.5b).

Then

Dap - (1/2) ( Vp + Vpa,) (3.5d)

and

vaM vOL on C, (3.5e)

where A, CT and C, have the same meaning as before.

The constitutive relation in dimensionless form states

E6P (l+V) X - v a + X63) + LpP (3.6)

where D is the strain-rate tensor, Z is the stress-rate tensor, and

0 ~in A.L6AP' - '(3.7)
1 (3/2) ( l-l) (/ .)S S in (p

refers to the plastic strain-rate tensor. Here

22 _112 + 02 + Z,32 + 3 122 - I -E22 233 - 3 111

We can automatically satisfy (3.Sa) by means of a stress function f such that

SEI - f.,U ZE22 = f. 912 - -f.=z (3.8)

In addition, we require z33, which is determined by the plane-strain condition

{ 3-vZ= in A.
1233 - 0- (3.9)

I3Z3 - v Z= + (3/2) (a-L1) (Qg't 0) 533 in Ap

but this in general involves solving a complicated differential equation in At . The difficulty

is avoided by restricting our consideration to the case of v - 1/2, when

33 - (1/2) go in A (3.10)

For this reason we will consider here only the case of v = 112. The procedure for

detemining is then analogous to that of the mode M case. We take

f(O) - p(r) fO(LO) + q(r) f"(O) (3.11)

fS

6 - r
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where
fr(LO) - K o(S) [2 (2V2,, sO(o) - aZo(o) / [(1+s)(2+s)]

f-(LO) - r(0) [2 (21W-112, s-(O) - (1/3) [3 cos (0/2) + cos (30/2)]

and where p(j) and q(c) are again given by (2.12).

Given f we use (3.8) to compute the stress components. We also compute the

stress-rate components from
X.,I = -fJUZ = = -f.u= M12 = f= Z3 3" -1/2) ZaC

In these calculations the following derivatives of gO(O) are needed

(gO)'(o) =- /,o()' (l+s)

(gO)"(e) o(o) - (2+.) r(0)

(gO)."(0) = ( io)'(e) - (2+s) (gO)'(0)

all of which are expressed in terms of quantities readily available from the numerical

integration of system (3.5 ) in Ponte Castafieda (1985c).

The variation of the stuses is obtained by assuming x and y to be independent

a a (aU0gaicK + (aaw" By

and again it is found that if we take A to be the upper-half plane

IC v* &T. ds -0

Thus the variational statement reduces to

JA [(+V)Z89 -VL +Z 3)5gaJdA +...

(3.12)

...+ ( -1) J, (Z.-,)[(3OM 9,,8.-(OM (am +33) 894 dA - 0

where A. refers to the active plastic zones (both plastic loading and reloading).

Again, for the case of v - 1/2, no integrations are needed beyond those explicitly

shown in the variational statement, which provides a system of two nonlinear algebraic

equations K and y to be solved for given aL

Y *,
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3.3 Re b,

The results of the numerical calculations for v - 1/2 are presented in Table 3, and

are shown graphically in Figures 5 and 6. It is observed that x increases from unity as a

decreases, whereas y remains roughly constant for all a. More specifically, it is found that

even though the resulting values of ic for a . 0.05 and 0.1 seem to be inconsistent with the

rest of the values of r., the general trend of Kc as a approaches zero, outlined in the figure,

is consistent with the perfectly-plastic result of K = 2.9476 (Slepyan, 1974). The

anomalous behavior of the results for ic for small a is seen to be a consequence of the

deficiency in the values of s for small a (see Ponte Castafieda, 1985c).

The active plastic zones coresponding to several values of a are shown in Figure

10, where the axis coordinates have been appropriately nondimensionalised. In spite of our

comments in the previous paragraph, we have included in this figure the plastic zones

corresponding to values of a equal to 0.05 and 0.1, for the purpose of explicitly showing

some plastic reloading zones, which are an important feature of the plane-strain mode I

problem. Another interesting feature is the fact that the extent of the plastic zones in the line

ahead of the crack, rp, is small, and in fact vanishes for a w1 and again for a - 0.1. The

fact that rp vanishes for a - I is intrinsic to the v - 1/2 case, but the fact that it vanishes

again for a - 0.1, depending on die specific value of v, is more interesting, and its source

can be traced to a change in sign of the quantity jrr°(r,0) - Z 0 (r,0), which forces

W(r,0) to vanish when a takes on the critical value.

Unforunately, no finite element results are available for the linear-hardening plane-

strain mode I problem to compare with our results. Dean and Hutchinson (1980) only

considered power hardening in mode I, and their results are quite different from ours.

V -~ b$ P ~t
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4. Plane-strem (mode I)

4.1 The plasdc sires iraensiry factr

In plane stress the appropriate nondimensional variables are the same as in plane

strain as given by (3.1) with the exception of 33, which is set equal to zero. The far fields

are as given by (3.2) where the o;6 (0) are the same as in plane strain, but the va'(0) are

different. The near-tip fields have the same form as (3.3), but the strength of the

singularity, and the angular variation of the fields are as given in Section 4 of Ponte

Castafieda (1985c). The plastic stress intensity factor has then the same general form as

(3.4), where again we expect ic = ic(ocv).

4.2 The variadonal statement of the problem

The same development as for plane strain applies for plane stress, provided that we

set g33 equal to zero, and we evaluate the pertinent quantities that go into the variational

statement (3.12) using the appropriate near-tip and remote fields. Note that because a3 is

equal to zero, independently of the value of v, the variational statement applies equally well

for any value of v. For definiteness, however, we will perform the computations here for

v = 1/2 only.

Note that unlike s, which was found to be independent of v, ic appears to be a

functions of v as well as o. This is analogous to what happens in the stationary plastic

crack problem. Nevertheless, we expect x to become independent of v in the limit as a

approaches zero, since it can be shown (Rice, 1982) that the stress field of the perfectly-

plastic problem in plane stress is independent of v.

4.3 Result

The results of the calculations corresponding to the value of v = 1/2 are presented in

Table 4, and in Figures 5 and 6. It is seen that for plane-stress, ic increases slightly from
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unity as a decreases, and y remains roughly constant as oL changes. Note that in the elastic

limit 1 approaches unity, but more interestingly, in the perfectly-plastic limit ic seems to be

consistent with the result that one would expect from the solution of the perfectly-plastic

problem with a centered-fan sector centered about the crack line (see Rice, 1982 and Dean,

1983) ic - 2/43 - 1.1547.

The active plastic zones obtained are shown in Figure 11. They have a shape similar

to the corresponding anti-plane strain zones, but they are taller and skinnier, at least for the

given range of O.

Dean (1983) produced the corresponding finite element method results for this

problem. His results show again that the finite element method is not very good at

predicting the strength of the plastic singularity for small values of (z. However, we find

that our plastic zones are similar in shape and size to his.

S. Discussion

It is apparent that this new approximate method to determine the plastic stress

intensity factor of a steadily-moving crack in a linear-hardening material is at least more

efficient than the corresponding finite element method. It also seems reasonable that it

should produce more accurate results for the near-tip fields as long as the range of validity

of the imposed near-tip singularity field is not too small. This method, however, suffers

from some difficultties that we will address next

The first of these difficulties, addressed here for convenience in the context of mode

I, has to do with the fact that 1 , as calculated from our guess for f, becomes unbounded

as 1 -+ x, whereas it is known (see Slepyan, 1973 for mode III, or Ponte Castafieda,

1985b for the analogous result in mode I) that 1 in fact remains bounded as 0 -+ix.

Indeed, we find by making use of the results for the analytical near-tip fields in the elastic
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sector found in Ponte Castafieda (1985c), and the given expression for I that our

approximate 11 has the following behavior

1 1 - [C zp'(z)l-) +D+...] D -+ as 0 -+ x

where

r p'(z) - -212/( 2 + 'y2)2

On the other hand, we have dt the exact f is given by

f(r0) - P(rA) + fp,(x2)

where fh yields a bounded contribution to 11 as 0 -+ x, but fPA yields no contribution at

all, so that the exact I1 remains bounded as 0 - x.

Nonetheless, this difficulty should not affect the values of ic and y significantly.

Recall that the stress 11 itself becomes unbounded as 0 -+ x, and therefore the fact that

11 - "sl1 should stay bounded as 0 --+ is a very special circumstance, that does not

carry much weight in the evaluation of the integrals in (2.13). The reason for this is that

even though the approximate 1 becomes unbounded like (x-0)s as 0 -+ r, the coefficient

of this term vanishes faster both as r approaches zero and infinity than the next order term

in 0, which behaves like D as 0 - x, making the artificial singularity in 0 unimportant in

relative terms.

A way to eliminate the difficulty, however, would be to start with a guess for the

sts-rate function

S(r,e) - p(x) 3O(re) + q(L) 3-(r,0)

but this would require integrating 3 with respect to x, to obtain 11.It is conceivable,

nonetheless, that one may be able to chose p(I) and q(x ) such that the integration is easy,

but we will not pursue this idea here any further.

Another important difficulty is the fact that the range of dominance of the near-tip

fields, which are a key element of this method, is expected to shrink to zero as a-+ 0. The

difficulty is compounded for the plane-strain mode I case where, as we have seen, we trust

>'*'#'
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our sL-W-a results even less. Finally, we should add that improved results would also be

iPted if we included the correct first order perturbation of the remote fields.

6. Concluding remarks

In this work, we have completed the knowledge of the near-tip stress and

deformation fields of a crack propagating steadily and quasi-statically in a linear-hardening

material under small-scale yielding conditions, by determining the plastic stress intensity

factor associated with these fields. The form of these fields, and the associated strength of

the singularity has been given by Ponte Castafieda (1985c).

The procedure, which so far has only been exploited in its crudest form, is fairly

successful, provided that the strain-hardening is not too small, but this is not seen to be a

major drawback because we expect that the correct results for small strain-hardening would

not be too different from the well-known perfectly-plastic results. Neverthess, the method

should be subject to overall improvement by use of a more sophisticated choice for the

stress function.

Finally, it should be pointed out that although the present work does not directly

address the theoretical prediction of resistance curves, it seems reasonable that it could be

extended to do so.
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Tables

0.9 1.030 2.895

0.8 1.044 1.880

0.7 1.054 1.524

0.6 1.058 1.318

0.5 1.055 1.163

0.4 1.044 1.006

0.3 1.005 0.685

0.2 0.976 0.513

*0.1 0.943 0.509

Table 1-The values of ic and yas functions of a for anti-plane strain.
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a S S $  I C*

0.9 -0.483 -0.475 1.030 1.01

0.5 -0.394 -0.375 1.055 1.02

0.3 -0.325 -0.297 1.005 1.01

0.2 -0.276 -0.247 0.976 0.99

0.1 -0.207 -0.169 0.943 0.98

(*) F.E.M. results.

Table 2-A comparison of the values of s and ic for anti-plane strain.

--



-26-

0.9 1.085 1.001

0.8 1.170 1.001

0.7 1.268 0.99

0.6 1.392 0.995

0.5 1.565 0.989

0.4 1.817 0.980

0.3 2.184 0.968

0.2 2.568 0.960

0.1 2.640 0.960

Table 3-The values of ic and 'yfor plane strain mode I (y - 1/2).
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0.9 1.3 .0

0.9 1.03 1.000

0.7 1.093 1.000

0.6 1.122 1.001

0.5 1.148 1.000

0.4 1.169 1.000

0.3 1.179 1.000

0.2 1.173 0.9

0.1 1.137 0."97

Table 4-The values of ic and 'yfor plane stress mode I (v -1/2).
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